
Topology 45 (2006) 929–953
www.elsevier.com/locate/top

The Thurston norm, fibered manifolds and twisted Alexander
polynomials

Stefan Friedla, Taehee Kimb,∗

a Rice University, Houston, TX, 77005-1892, United States
b Department of Mathematics, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea

Abstract

Every element in the first cohomology group of a 3-manifold is dual to embedded surfaces. The Thurston
norm measures the minimal ‘complexity’ of such surfaces. For instance the Thurston norm of a knot complement
determines the genus of the knot in the 3-sphere. We show that the degrees of twisted Alexander polynomials give
lower bounds on the Thurston norm, generalizing work of McMullen and Turaev. Our bounds attain their most
concise form when interpreted as the degrees of the Reidemeister torsion of a certain twisted chain complex. We
show that these lower bounds give the correct genus bounds for all knots with 12 crossings or less, including the
Conway knot and the Kinoshita–Terasaka knot which have trivial Alexander polynomial.

We also give obstructions to fibering 3-manifolds using twisted Alexander polynomials and detect all knots with
12 crossings or less that are not fibered. For some of these it was unknown whether or not they are fibered. Our
work in particular extends the fibering obstructions of Cha to the case of closed manifolds.
c© 2006 Elsevier Ltd. All rights reserved.

MSC: primary 57M27; secondary 57N10

Keywords: Thurston norm; Twisted Alexander polynomials; 3-manifolds; Knot genus; Fibered knots

1. Introduction

1.1. Definitions and history

Let M be a 3-manifold. Throughout the paper we will assume that all 3-manifolds are compact,
orientable and connected. Let φ ∈ H1(M) (integral coefficients are understood). The Thurston norm of
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φ is defined as

‖φ‖T = min{χ−(S) | S ⊂ M properly embedded surface dual to φ}.

Here, given a surface S with connected components S1 ∪ · · · ∪ Sk , we define χ−(S) =∑k
i=1 max{−χ(Si ), 0}. Thurston [25] showed that this defines a seminorm on H1(M) which can be

extended to a seminorm on H1(M; R). As an example consider X (K ) := S3
\ νK , where K ⊂ S3 is a

knot and νK denotes an open tubular neighborhood of K in S3. Let φ ∈ H1(X (K )) be a generator, then
it is easy to see that ‖φ‖T = 2 genus(K ) − 1.

It is a classical result of Alexander that

2genus(K ) ≥ deg(∆K (t)),

where ∆K (t) denotes the Alexander polynomial of a knot K . In recent years this was greatly generalized.
Let M be a 3-manifold whose boundary is empty or consists of tori. Let φ ∈ H1(M) ∼= Hom(H1(M), Z)

be primitive, i.e., the corresponding homomorphism φ : H1(M) → Z is surjective. Then McMullen [20]
showed that if the Alexander polynomial ∆1(t) ∈ Q[t±1

] of (M, φ) is non-zero, then

‖φ‖T ≥ deg (∆1(t)) − (1 + b3(M)).

Here b3(M) denotes the third Betti number of M , in particular b3(M) = 1 if M is closed and b3(M) = 0
if M has boundary. An alternative proof for closed manifolds was given by Vidussi [29,30] using results
of Kronheimer and Mrowka [18] and Meng and Taubes [21] in Seiberg–Witten theory.

Harvey [11] in the general case and Cochran [3] in the knot complement case generalized McMullen’s
inequality. They showed that the degrees of higher-order Alexander polynomials which are defined over
non-commutative polynomial rings give lower bounds on the Thurston norm. Later Harvey’s work [11]
was refined by Turaev [28].

In this paper we will show how the degrees of twisted Alexander polynomials give lower bounds on
the Thurston norm.

1.2. Twisted Alexander polynomials and Reidemeister torsion

In the following let F be field. Let φ ∈ H1(M) ∼= Hom(π1(M), Z) and α : π1(M) → GL(F, k) a
representation. Then α⊗φ induces an action of π1(M) on Fk

⊗F F[t±1
] =: Fk

[t±1
] and we can therefore

consider the twisted homology F[t±1
]-module Hα

i (M; Fk
[t±1

]). We define ∆α
i (t) ∈ F[t±1

] to be its
order; it is called the i th twisted Alexander polynomial of (M, φ, α) and well-defined up to multiplication
by a unit in F[t±1

]. The twisted Alexander polynomial of a knot was introduced by Lin [19] in 1990.
In this paper we use the above homological definition of Kirk and Livingston [16]. These polynomials
can be computed efficiently using Fox calculus and Poincaré duality for twisted homology. We refer to
Section 2 for more details.

If ∂ M is empty or consists of tori and if ∆α
1 (t) 6= 0, then we will show that

Hα
i (M; Fk

[t±1
] ⊗F[t±1] F(t)) = 0 for all i . Therefore the Reidemeister torsion τ(M, φ, α) ∈ F(t) is

defined (cf. [26] for a definition) and (cf. [26, p. 20] or [16, Theorem 3.4])

τ(M, φ, α) =

2∏
i=0

∆α
i (t)(−1)i+1

∈ F(t).
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The equality holds up to multiplication by a unit in F[t±1
]. For f (t)/g(t) ∈ F(t) we define

deg( f (t)/g(t)) := deg( f (t)) − deg(g(t)) for f (t), g(t) ∈ F[t±1
]. This allows us to consider

deg(τ (M, φ, α)).

1.3. Lower bounds on the Thurston norm

The following theorem shows that the degrees of twisted Alexander polynomials can be used to give
lower bounds on the Thurston norm.

Theorem 1.1. Let M be a 3-manifold whose boundary is empty or consists of tori. Let φ ∈ H1(M) be
non-trivial and α : π1(M) → GL(F, k) a representation such that ∆α

1 (t) 6= 0. Then

‖φ‖T ≥
1
k

deg(τ (M, φ, α)).

Equivalently,

‖φ‖T ≥
1
k

(
deg(∆α

1 (t)) − deg(∆α
0 (t)) − deg(∆α

2 (t))
)
.

The proof of Theorem 1.1 is partly based on ideas of McMullen [20] and Turaev [28]. For one-
dimensional representations it is easy to determine ∆α

0 (t) and ∆α
2 (t) and one can easily show that

Theorem 1.1 contains McMullen’s bound for one-variable Alexander polynomials ([20, Proposition 6.1])
and results of Turaev [27].

In Theorem 4.1 we give lower bounds in the case ∆α
1 (t) = 0 for certain φ’s. In [7] we introduce

twisted Alexander norms (similar to McMullen’s Alexander norm [20]) which are well-suited to study
the Thurston norm of link complements. We also refer to [6] for a further extension of Theorem 1.1.

1.4. Fibered manifolds

Let φ ∈ H1(M) be non-trivial. We say (M, φ) fibers over S1 if the homotopy class of maps M → S1

induced by φ : π1(M) → H1(M) → Z contains a representative that is a fiber bundle over S1. If K is a
fibered knot, i.e., if X (K ) fibers, then it is a classical result of Neuwirth that K satisfies

∆K (t) is monic and deg(∆K (t)) = 2 genus(K ). (1)

Theorem 1.2. Assume that (M, φ) fibers over S1 and that M 6= S1
× D2, M 6= S1

× S2. Let
α : π1(M) → GL(F, k) be a representation. Then ∆α

1 (t) 6= 0 and

‖φ‖T =
1
k

deg(τ (M, φ, α)).

This result clearly generalizes the first classical condition on fibered knots. McMullen, Cochran,
Harvey and Turaev prove corresponding theorems in their respective papers [20,3,11,28].

Now let R be a Noetherian unique factorization domain (henceforth UFD), for example R = Z. Given
a representation π1(M) → GL(R, k) Cha [1] defined a twisted Alexander polynomial ∆α

1 (t) ∈ R[t±1
],

which is well-defined up to multiplication by a unit in R[t±1
]. Cha showed that for a fibered knot the

polynomials ∆α
1 (t) are monic [1]. (Recall that a polynomial is called monic, if its highest and lowest

coefficient are units in R.) Using Theorem 1.2 we obtain the following theorem.
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Theorem 1.3. Let M be a 3-manifold. Let φ ∈ H1(M) be non-trivial such that (M, φ) fibers over S1

and such that M 6= S1
× D2, M 6= S1

× S2. Let R be a Noetherian UFD and let α : π1(M) → GL(R, k)

be a representation. Then ∆α
1 (t) ∈ R[t±1

] is monic and

‖φ‖T =
1
k

deg(τ (M, φ, α)).

In fact in Proposition 6.1 we show that if the fibering obstruction of Theorem 1.2 vanishes, then the
conclusion of Theorem 1.3 holds. This shows that the obstructions of Theorem 1.2 contain Neuwirth’s
and Cha’s [1] obstructions for fibered knots and extend them to closed 3-manifolds. Theorem 1.2 is also
closely related to the result of [10] on fibered knots.

1.5. Examples

We give two main examples in Section 5. First we show that the lower bounds of Theorem 1.1 give,
for appropriate representations, the correct genus bounds for all knots with up to 12 crossings. These
genera have been found by Gabai, Rasmussen, Stoimenow et al. (cf. [2] and [23]). Note that some knots
with up to 12 crossings have trivial Alexander polynomial, and hence the genus bounds of McMullen,
Cochran and Harvey vanish. These, and all later computations in this paper, were done using the program
KnotTwister [5].

Second we apply Theorem 1.2 to study the fiberedness of knots. It is known that a knot K with
11 or fewer crossings is fibered if and only if K satisfies Neuwirth’s condition (1). Hirasawa and
Stoimenow [23] had started a program to find all fibered 12-crossing knots. Using methods of Gabai
they showed that except for thirteen knots a 12-crossing knot is fibered if and only if it satisfies condition
(1). Furthermore they showed that among these 13 knots the knots 121498, 121502, 121546 and 121752 are
not fibered even though they satisfy condition (1). Using Theorem 1.2 we showed the non-fiberedness of
these 4 knots and we also showed that the remaining 9 knots are not fibered either. These 9 knots are:

121345, 121567, 121670, 121682, 121771, 121823, 121938, 122089, 122103.

This result completes the classification of all fibered 12-crossing knots. We note that later Jacob
Rasmussen also showed that these 13 knots are not fibered using knot Floer homology (cf. [22, Section
3]).

1.6. Outline of the paper

In Section 2 we give a definition of twisted Alexander polynomials and we discuss the Alexander
polynomials of 3-manifolds. We give the proofs of Theorems 1.1 and 1.2 in Section 3. In Section 4
we discuss the case that ∆α

1 (t) = 0. We discuss the examples in Section 5. In Section 6 we prove
Theorem 1.3.
Notations and conventions: We assume that all 3-manifolds are compact, oriented and connected. All
homology groups and all cohomology groups are with respect to Z-coefficients, unless it specifically
says otherwise. For a link L in S3, X (L) denotes the exterior of L in S3. (That is, X (L) = S3

\ νL
where νL is an open tubular neighborhood of L in S3.) F will always denote a field. We identify
the group ring F[Z] with F[t±1

]. For a 3-manifold M we use the canonical isomorphisms to identify
H1(M) = Hom(H1(M), Z) = Hom(π1(M), Z). Hence sometimes φ ∈ H1(M) is regarded as a
homomorphism φ : π1(M) → Z (or φ : H1(M) → Z) depending on the context.
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2. The twisted Alexander polynomials and duality

2.1. Twisted homology groups

We first give a definition of twisted homology groups and discuss some of their properties. Let X be a
topological space, Y ⊂ X a (possibly empty) subset and x0 ∈ X a point. Let R be a ring (e.g. R = F or
R = F[t±1

]) and β : π1(X, x0) → GL(R, k) a representation. This naturally induces a left Z[π1(X, x0)]-
module structure on Rk .

Denote by X̃ the set of all homotopy classes of paths starting at x0 with the usual topology. Then the
evaluation map p : X̃ → X is the universal cover of X . Note that g ∈ π1(X, x0) naturally acts on X̃ on
the right by precomposing any path by g−1.

Given Y ⊂ X we let Ỹ = p−1(Y ) ⊂ X̃ . Then the above π1(X, x0) action on X̃ gives rise to a right
Z[π1(X, x0)]-module structure on the chain groups C∗(X̃), C∗(Ỹ ) and C∗(X̃ , Ỹ ). Therefore we can form
the tensor product over Z[π1(X, x0)] with Rk , we define

Hβ
i (X; Rk) = Hi (C∗(X̃) ⊗Z[π1(X,x0)] Rk),

Hβ
i (Y ⊂ X; Rk) = Hi (C∗(Ỹ ) ⊗Z[π1(X,x0)] Rk),

Hβ
i (X, Y ; Rk) = Hi (C∗(X̃ , Ỹ ) ⊗Z[π1(X,x0)] Rk).

Sometimes we refer to Hβ
i (Y ⊂ X; Rk) as twisted subspace homology. Note that if we have inclusions

Z ⊂ Y ⊂ X then we get an induced map Hβ
i (Z ⊂ X; Rk) → Hβ

i (Y ⊂ X; Rk). Also note that we have
an exact sequence of complexes

0 → Ci (Ỹ ) ⊗Z[π1(X,x0)] Rk
→ Ci (X̃) ⊗Z[π1(X,x0)] Rk

→ Ci (X̃ , Ỹ ) ⊗Z[π1(X,x0)] Rk
→ 0

which gives rise to a long exact sequence

· · · → Hβ
i (Y ⊂ X; Rk) → Hβ

i (X; Rk) → Hβ
i (X, Y ; Rk) → · · · . (2)

Now denote by Yi , i ∈ I , the path connected components of Y . Pick base points yi ∈ Yi , i ∈ I , and
paths γi : [0, 1] → Y with γi (0) = yi and γi (1) = x0. Then we can get induced representations βi (γi ) :

π1(Yi , yi ) → π1(X, yi ) → π1(X, x0) → GL(R, k) and induced homology groups Hβi (γi )

j (Yi ; Rk)

using the universal cover of Yi .

Lemma 2.1. Given γi there exists a canonical isomorphism

Hβi
j (Yi ⊂ X; Rk) ∼= Hβi (γi )

j (Yi ; Rk).

Proof. Let K be the image of π1(Yi , yi ) under the map ι(γi ) : π1(Yi , yi ) → π1(X, yi ) → π1(X, x0)

induced by γi . Denote by Ỹi
K

the cover of Yi corresponding to π1(Yi , yi ) → K . More precisely, we take

Ỹi
K

= {σ : [0, 1] → Yi | σ(0) = yi }/ ∼

where ∼ is the equivalence relation given by

σ1 ∼ σ2 if σ1(1) = σ2(1) and ι(γi )(σ1σ
−1
2 ) = e ∈ K .
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Then we get a well-defined injective map

Ỹi
K

→ Ỹi ⊂ X̃

[σ ] 7→ [γ −1
i σ ].

We will use this injection to identify Ỹi
K

with its image in Ỹi . Note that Ỹi is the disjoint union of copies
of Ỹi

K
indexed by π1(X, x0)/K . In particular a singular simplex in Ỹi is of the form σg for a singular

simplex σ in Ỹi
K

and an element g ∈ π1(X, x0). Mapping

σg ⊗Z[π1(X,x0)] v 7→ σ ⊗Z[K ] β(g)v

(with v ∈ Rk) induces an isomorphism C∗(Ỹi ) ⊗Z[π1(X,x0)] Rk ∼= C∗(Ỹi
K
) ⊗Z[K ] Rk of chain complexes.

Denote the universal cover of Yi by Ỹi
π1(Yi ,yi ). It is easy to see that the projection induced map

C∗(Ỹi
π1(Yi ,yi )

) → C∗(Ỹi
K
) gives rise to an isomorphism of chain complexes:

C∗(Ỹi
K
) ⊗Z[K ] Rk ∼= C∗(Ỹi

π1(Yi ,yi )
) ⊗Z[π1(Yi ,yi )] Rk . �

Note that the isomorphism of the lemma only depends on the choice of γi , and we call the
isomorphism the isomorphism induced by γi .

It is clear that the isomorphism type of Hβ
j (X, Y ; Rk) does not depend on the choice of the base point.

In most situations we can and will therefore suppress the base point in the notation and the arguments.
We will also normally write β instead of β(γi ). Furthermore we write Hβ

j (Y ; Rk) = ⊕i∈I Hβ
j (Yi ; Rk).

With these conventions the long exact sequence (2) induces a long exact sequence

· · · → Hβ
j (Y ; Rk) → Hβ

j (X; Rk) → Hβ
j (X, Y ; Rk) → · · · .

The isomorphism type of the sequence is independent of all the choices made.

2.2. The twisted Alexander polynomials

For the remainder of this section we assume that M is a 3-manifold and φ ∈ H1(M). Let
α : π1(M) → GL(F, k) be a representation. We can now define a left Z[π1(M)]-module structure
on Fk

⊗F F[t±1
] =: Fk

[t±1
] via α ⊗ φ as follows:

g · (v ⊗ p) := (α(g) · v) ⊗ (φ(g) · p) = (α(g) · v) ⊗ (tφ(g) p)

where g ∈ π1(M), v ⊗ p ∈ Fk
⊗F F[t±1

] = Fk
[t±1

]. Put differently, we get a representation
α ⊗ φ : π1(M) → GL(F[t±1

], k). We call Hα⊗φ
i (M; Fk

[t±1
]) the i th twisted Alexander module of

(M, φ, α). Usually we drop the notation φ and write Hα
∗ (M; Fk

[t±1
]). Note that Hα

i (M; Fk
[t±1

]) is a
finitely generated module over the PID F[t±1

]. Therefore there exists an isomorphism

Hα
i (M; Fk

[t±1
]) ∼= F[t±1

]
f
⊕

l⊕
i=1

F[t±1
]/(pi (t))



S. Friedl, T. Kim / Topology 45 (2006) 929–953 935

for p1(t), . . . , pl(t) ∈ F[t±1
] \ {0}. We define

∆α
M,φ,i (t) :=


l∏

i=1

pi (t), if f = 0

0, if f > 0.

This is called the i th twisted Alexander polynomial of (M, φ, α). We furthermore define ∆̃α
M,φ,i (t) :=∏k

i=1 pi (t) regardless of f . In most cases we drop the notations M and φ and write ∆α
i (t) and ∆̃α

i (t). It
follows from the structure theorem of finitely generated modules over a PID that these polynomials are
well-defined up to multiplication by a unit in F[t±1

].
For an oriented knot K we always assume that φ denotes the generator of H1(X (K )) given by the

orientation. If α : π1(X (K )) → GL(Q, 1) is the trivial representation then the Alexander polynomial
∆α

1 (t) equals the classical Alexander polynomial ∆K (t) ∈ Q[t±1
] of the knot K .

Let f =
∑n

i=m ai t i
∈ F[t±1

] \ {0} with am 6= 0, an 6= 0. Then we define deg( f ) = n − m. The
following observation follows immediately from the classification theorem of finitely generated modules
over a PID.

Lemma 2.2. Hα
i (M; Fk

[t±1
]) is a finite-dimensional F-vector space if and only if ∆α

i (t) 6= 0. If
∆α

i (t) 6= 0, then

deg(∆α
i (t)) = dimF(Hα

i (M; Fk
[t±1

])).

Furthermore deg(∆̃α
i (t)) = dimF(TorF[t±1](Hα

i (M; Fk
[t±1

]))).

2.3. Duality for twisted homology

In this section we discuss a duality theorem for twisted homology which we will need to compute
higher twisted Alexander polynomials of 3-manifolds and which will also play an important role in the
proof of Proposition 3.6.

Let F be a field with (possibly trivial) involution f 7→ f . We equip Fk with the standard hermitian
inner product 〈v, w〉 = vtw (where we view elements in Fk as column vectors). We extend the involution
on F to F[t±1

] by taking t 7→ t−1. We equip Fk
[t±1

] with the hermitian inner product defined by
〈vt i , wt j

〉 := 〈v, w〉t i t− j for all v, w ∈ Fk .
In the following let R = F or R = F[t±1

]. Let β : π1(M) → GL(R, k) be a representation. There
exists a unique representation β : π1(M) → GL(R, k) such that

〈β(g−1)v, w〉 = 〈v, β(g)w〉

for all v, w ∈ Fk, g ∈ π1(M).
The following lemma is a variation on [16, p. 639].

Lemma 2.3. Let X be an n-manifold and β : π1(X) → GL(R, k) a representation. Then

Hβ
n−i (X; Rk) ∼= HomR(Hβ

i (X, ∂ X; Rk), R) ⊕ ExtR(Hβ

i−1(X, ∂ X; Rk), R)

as R-modules.
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Proof. Let π := π1(X). We write (Rk)′ when we think of Rk as equipped with the right Z[π ]-module
structure given by v · g := β(g−1)v for v ∈ Rk and g ∈ π . By Poincaré duality we have (recall that ∂̃ X
is the pre-image of ∂ X under the covering map X̃ → X )

Hβ
n−i (X; Rk) ∼= H i

β(X, ∂ X; (Rk)′) := Hi (HomZ[π ](C∗(X̃ , ∂̃ X), (Rk)′)).

Using the inner product we get an isomorphism of R-module chain complexes:

HomZ[π ](C∗(X̃ , ∂̃ X), (Rk)′) → HomR(Cβ
∗ (X̃ , ∂̃ X; Rk), R) = HomR(C∗(X̃ , ∂̃ X) ⊗Z[π ] Rk, R)

f 7→ ((c ⊗ w) 7→ 〈 f (c), w〉).

The lemma now follows from applying the universal coefficient theorem. �

2.4. Twisted Alexander polynomials of 3-manifolds

Lemma 2.4. Let φ ∈ H1(M) be non-trivial and α : π1(M) → GL(F, k) a representation. Then

(1) ∆α
0 (t) 6= 0,

(2) ∆α
3 (t) = 1.

Proof. Both statements follow from a straightforward argument using a cell decomposition of M as in
the proof of Proposition 6.1. Alternatively note that Kirk and Livingston showed (1) in [16, Proposition
3.5]. For (2) we apply Lemma 2.3 with R = F[t±1

] and β = α ⊗ φ, and get

Hα⊗φ

3 (M; Fk
[t±1

]) ∼= HomF[t±1](Hα⊗φ

0 (M, ∂M; Fk
[t±1

]), F[t±1
])

as F[t±1
]-modules. Note that α ⊗ φ = α ⊗ (−φ). It follows from (1) that Hα⊗(−φ)

0 (M; Fk
[t±1

]) is

F[t±1
]-torsion. It follows from the long exact homology sequence that Hα⊗(−φ)

0 (M, ∂M; Fk
[t±1

]) is

F[t±1
]-torsion as well, hence Hα⊗φ

3 (M; Fk
[t±1

]) = 0. �

Proposition 2.5. Let M be a 3-manifold whose boundary is empty or consists of tori and let φ ∈ H1(M)

be non-trivial. Let α : π1(M) → GL(F, k) be a representation such that ∆α
1 (t) 6= 0.

(1) If M is closed, then

∆α
2 (t) = ∆α

0 (t−1).

(2) If M has non-empty boundary, then ∆α
2 (t) = 1.

In particular deg(∆α
2 (t)) = b3(M) deg(∆α

0 (t)). Furthermore, if α is unitary, i.e. α = α, then
deg(∆α

2 (t)) = b3(M) deg(∆α
0 (t)).

For the proof we need the following two useful lemmas which we will also need several times later.

Lemma 2.6. Let R be a ring, A a group and α : A → GL(R, k) a representation. If ϕ : B → A is a
homomorphism, then Hα◦ϕ

0 (B; Rk) → Hα
0 (A; Rk) is surjective. Furthermore if ϕ is an epimorphism,

then Hα◦ϕ
0 (B; Rk) → Hα

0 (A; Rk) is an isomorphism.
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Proof. The lemma follows immediately from the commutative diagram of exact sequences

0 → {α(ϕ(b))v − v | b ∈ B, v ∈ Rk
} → Rk

→ Hα◦ϕ
0 (B; Rk) → 0

↓ ↓ ↓

0 → {α(a)v − v | a ∈ A, v ∈ Rk
} → Rk

→ Hα
0 (A; Rk) → 0

and the observation that the vertical map on the left is injective (respectively an isomorphism). �

A standard argument shows the following lemma.

Lemma 2.7. Let X be an n-manifold, K a field (e.g. F or F(t)), and α : π1(X) → GL(K, k) a
representation. Then

n∑
i=0

(−1)i dimK(Hα
∗ (X; Kk)) = kχ(X).

Proof of Proposition 2.5. We will first show that Hα
2 (M; Fk

[t±1
]) is F[t±1

]-torsion. Note that it follows
from the long exact homology sequence for (M, ∂M) and from duality that χ(M) =

1
2χ(∂ M). Hence

χ(M) = 0 in our case. It now follows from Lemma 2.7 (applied to the field F(t)) that

3∑
i=0

(−1)i dimF(t)(Hα
i (M; Fk

[t±1
] ⊗F[t±1] F(t))) = k · χ(M) = 0.

Note that Hα
i (M; Fk

[t±1
] ⊗F[t±1] F(t)) = Hα

i (M; Fk
[t±1

]) ⊗F[t±1] F(t) since F(t) is flat over F[t±1
].

By assumption and by Lemma 2.4 we have Hα
i (M; Fk

[t±1
]) ⊗F[t±1] F(t) = 0 for i 6= 2, hence

Hα
2 (M; Fk

[t±1
]) ⊗F[t±1] F(t) = 0 as well.

Now we apply Lemma 2.3 and using that α ⊗ φ = α ⊗ (−φ) we get

Hα⊗φ

2 (M; Fk
[t±1

]) ∼= HomF[t±1]

(
Hα⊗(−φ)

1 (M, ∂M; Fk
[t±1

]), F[t±1
]

)
⊕ ExtF[t±1]

(
Hα⊗(−φ)

0 (M, ∂M; Fk
[t±1

]), F[t±1
]

)
as F[t±1

]-modules. Since we know that Hα⊗φ

2 (M; Fk
[t±1

]) is F[t±1
]-torsion it follows that the first

summand on the right hand side is zero.
By Lemma 2.4 Hα⊗(−φ)

0 (M; Fk
[t±1

]) is F[t±1
]-torsion. From the long exact homology sequence

of the pair (M, ∂M) it follows that Hα⊗(−φ)

0 (M, ∂M; Fk
[t±1

]) is also F[t±1
]-torsion. Since

Hα⊗(−φ)

0 (M, ∂M; Fk
[t±1

]) is a finitely generated F[t±1
]-torsion module and F[t±1

] is a PID,

ExtF[t±1](Hα⊗φ

0 (M, ∂M; Fk
[t±1

]), F[t±1
]) ∼= Hα⊗(−φ)

0 (M, ∂M; Fk
[t±1

]).

If M is closed then we get Hα
2 (M; Fk

[t±1
]) ∼= Hα⊗(−φ)

0 (M; Fk
[t±1

]). Therefore we deduce

that ∆α
2 (t) = ∆α

0 (t−1). If ∂ M 6= ∅, then by Lemma 2.6 the map Hα⊗(−φ)

0 (∂ M; Fk
[t±1

]) →

Hα⊗(−φ)

0 (M; Fk
[t±1

]) is surjective, hence Hα⊗(−φ)

0 (M, ∂M; Fk
[t±1

]) = 0. This shows that
Hα

2 (M; Fk
[t±1

]) = 0 and hence ∆α
2 (t) = 1. �

Remark. Given a presentation for π1(M) the polynomials ∆α
1 (t) and ∆α

0 (t) can be computed efficiently
using Fox calculus (cf. e.g. [4, p. 98], [16]). We point out that because we view C∗(M̃) as a right module
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over Z[π1(M)] we need a slightly different definition of Fox derivatives. We refer to [11, Section 6] for
details. Proposition 2.5 allows us to compute ∆α

2 (t) using the algorithm for computing the 0-th twisted
Alexander polynomial.

Remark. Let α : π1(M) → GL(F, k) be a unitary representation. Then the inequality in Theorem 1.1
becomes the computationally slightly simpler inequality

‖φ‖T ≥
1
k
(deg(∆α

1 (t)) − (1 + b3(M)) deg(∆α
0 (t))).

2.5. Reidemeister torsion of 3-manifolds

Assume that ∂ M is empty or consists of tori and that ∆α
1 (t) 6= 0. Then it follows from

Lemma 2.4 and Proposition 2.5 that ∆α
i (t) 6= 0 for all i and hence Hα

i (M; Fk
[t±1

] ⊗F[t±1] F(t)) =

Hα
i (M; Fk

[t±1
]) ⊗F[t±1] F(t) = 0 for all i . Therefore the Reidemeister torsion τ(M, φ, α) ∈

F(t)∗/{r t l
| r ∈ F∗, l ∈ Z} is defined. We refer to [26] for an excellent introduction into the theory

of Reidemeister torsion.
The following lemma follows from [26, p. 20] combined with the fact that ∆α

3 (t) = 1 (cf. also [16,
Theorem 3.4]).

Lemma 2.8. If ∆α
1 (t) 6= 0, then τ(M, φ, α) is defined and

τ(M, φ, α) =

2∏
i=0

∆α
i (t)(−1)i+1

∈ F(t)

up to multiplication by a unit in F[t±1
].

For our purposes we can also use this equality as a definition for τ(M, φ, α). We will mostly use
τ(M, φ, α) as a convenient and concise way to store information. We point out that τ(M, φ, α) can also
be computed directly from the chain complex of M (cf. [26]).

3. Proof of Theorems 1.1 and 1.2

3.1. Proof of Theorem 1.1

For the remainder of this section let M be a 3-manifold and let φ ∈ H1(M) be primitive. A
weighted surface Ŝ in M is defined to be a collection of pairs (Si , wi ), i = 1, . . . , l where Si ⊂ M
are properly disjointly embedded, oriented surfaces in M and wi are positive integers. We denote the
union

⋃
i Si ⊂ M by S′.

Every weighted surface Ŝ defines an element φŜ :=
∑l

i=1 wi · PD([Si ]) ∈ H1(M) where PD( f ) ∈

H1(M) denotes the Poincaré dual of an element f ∈ H2(M, ∂M). By taking wi parallel copies of Si
we get an (unweighted) properly embedded oriented surface S such that φŜ = PD([S]). We need the
following very useful proposition proved by Turaev in [28].

Proposition 3.1. There exists a weighted surface Ŝ = (Si , wi )i=1,...,l with

(1) φŜ = φ,
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(2) χ−(S) = ‖φ‖T , and
(3) M \ S′ connected.

For the remainder of this section let Ŝ = (Si , wi )i=1,...,l be a weighted surface as in Proposition 3.1.
We now do the following:

(1) We pick orientation preserving disjoint embeddings ι : Si × [0, wi ] → M, i = 1, . . . , l such that ι

restricted to Si × 0 is the identity (where we identify Si × 0 with Si ). We identify the image of ι with
Si × [0, wi ].

(2) Note that with these conventions we have S = ∪
l
i=1 ∪

wi −1
j=0 Si × j and S′

= ∪
l
i=1 Si .

(3) For any subset I ⊂ [0, 1] we write S × I = ∪
l
i=1 ∪

wi −1
j=0 Si × ( j + I ).

(4) We let ε =
1
2 .

(5) We let N = M \ S × (0, ε) and we let N ′
= M \∪

l
i=1 Si × (0, wi −1+ ε). Note that N ′ is connected

by Proposition 3.1(3).
(6) We pick a base point m0 for N ′ which also serves as a base point for M .
(7) For i = 1, . . . , l pick a base point si of Si and we pick a path in N ′ connecting m0 to si .

Recall that given a representation β : π1(M, m0) → GL(R, k) we get, using the paths chosen above,
induced representations (and hence twisted homology groups) for N ′ and Si × 0, i = 1, . . . , l which
we denote by the same symbol. We will sometimes use the isomorphisms of Lemma 2.1 induced by the
chosen paths to identify the twisted homology groups with the twisted subspace homology groups.

In the following let p : M̃ → M be the universal cover of M corresponding to the base point m0
as in Section 2.1, in particular M̃ is the set of homotopy classes of paths in M starting at m0. Also we
again write X̃ = p−1(X) ⊂ M̃ for any X ⊂ M . Now note that given a, a + δ ∈ [0, wi ] we get a
Z[π1(M, m0)]-equivariant map fδ : p−1(Si × a) → p−1(Si × (a + δ)) by extending a path from m0 to
a point in Si × a in the obvious way to a path from m0 to a point in Si × (a + δ). In particular we get an
induced map

fδ : Hβ
i (S j × a ⊂ M; Rk) → Hβ

i (S j × (a + δ) ⊂ M; Rk).

Using our choices of paths and using Lemma 2.1 we get a map

Hβ
i (S j ; Rk) = Hβ

i (S j × 0; Rk)
∼=
→ Hβ

i (S j × 0 ⊂ M; Rk) → Hβ
i (N ′

⊂ M; Rk)
∼=
→ Hβ

i (N ′
; Rk)

which we denote by ι−. Similarly we get a map

Hβ
i (S j ; Rk) = Hβ

i (S j × 0; Rk)

∼=
−→ Hβ

i (S j × 0 ⊂ M; Rk)
fw j −1+ε

−−−−−→ Hβ
i (S j × (w j − 1 + ε) ⊂ M; Rk)

→ Hβ
i (N ′

⊂ M; Rk)
∼=
−→ Hβ

i (N ′
; Rk)

which we denote by ι+.
For the remainder of this section we pick a representation α : π1(M, m0) → GL(F, k). With our

conventions and choices we can now formulate the following crucial lemma which provides the link
between the twisted homology of S1, . . . , Sl and the homology of M .
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Proposition 3.2. There exists a long exact sequence

· · · →

l⊕
j=1

Hα
i (S j ; Fk) ⊗F F[t±1

]

l⊕
j=1

ι−−ι+tw j

−−−−−−−−→ Hα
i (N ′

; Fk) ⊗F F[t±1
] → Hα⊗φ

i (M; Fk
[t±1

]) → · · ·

Proof. We have the following Mayer–Vietoris sequence of twisted subspace homology (where we write
V = Fk

[t±1
]):

→

Hα⊗φ
i (S × ε ⊂ M; V )

⊕

Hα⊗φ
i (S × 0 ⊂ M; V )

(
ι ι

−ι −ι

)
−−−−−→

Hα⊗φ
i (N ⊂ M; V )

⊕

Hα⊗φ
i (S × [0, ε] ⊂ M; V )

( ι ι )
−−−−−→ Hα⊗φ

i (M; V ) →

where ι stands for the maps induced by the various injections. Now consider the following commutative
diagram of sequences

Hα⊗φ
i (S × ε ⊂ M; V )

⊕

Hα⊗φ
i (S × 0 ⊂ M; V )

(
ι ι

−ι −ι

)
−−−−−→

Hα⊗φ
i (N ⊂ M; V )

⊕

Hα⊗φ
i (S × [0, ε] ⊂ M; V )

( ι ι )
−−−−−→ Hα⊗φ

i (M; V )

x(
− fε
id

) x(
id
0

) x
Hα⊗φ

i (S × 0 ⊂ M; V )
ι−ι◦ fε
−−−→ Hα⊗φ

i (N ⊂ M; V )
ι

−→ Hα⊗φ
i (M; V ).

Note that given a ∈ Hα⊗φ
i (S × ε ⊂ M; Fk

[t±1
]) and b ∈ Hα⊗φ

i (S × 0 ⊂ M; Fk
[t±1

]) we have

ι(a) + ι(b) = 0 ∈ Hα⊗φ
i (S × [0, ε] ⊂ M; Fk

[t±1
]) if and only if a = − fε(b). From this it now follows

easily that the bottom sequence is also exact.
Now note that we have canonical isomorphisms

Hα⊗φ
i (N ⊂ M; V ) ∼= Hα⊗φ

i (N ′
⊂ M; V ) ⊕

l⊕
j=1

w j −1⊕
s=1

Hα⊗φ
i (S j × [s − 1 + ε, s] ⊂ M; V )

Hα⊗φ
i (S ⊂ M; V ) ∼=

l⊕
j=1

Hα⊗φ
i (S j × 0 ⊂ M; V ) ⊕

l⊕
j=1

w j −1⊕
s=1

Hα⊗φ
i (S j × s ⊂ M; V ).

It is now easy to see, using the same arguments as above, that the following sequence is exact as well:

→

l⊕
j=1

Hα⊗φ
i (S j × 0 ⊂ M; V )

l⊕
j=1

ι−ι◦ fw j −1+ε

−−−−−−−−−→ Hα⊗φ
i (N ′

⊂ M; V )
ι

−→ Hα⊗φ
i (M; V ) → · · · .

Now note that φ vanishes on H1(N ′) and on every H1(S j ). Indeed, every curve in S j can be
pushed off into N ′, where φ vanishes. We therefore get canonical isomorphisms Hα⊗φ

i (N ′
; Fk

[t±1
]) ∼=

Hα
i (N ′

; Fk) ⊗F F[t±1
] and Hα⊗φ

i (S j ; Fk
[t±1

]) ∼= Hα
i (S j ; Fk) ⊗F F[t±1

]. We are done once we prove
the following claim.
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Claim. The diagram

Hα⊗φ
i (S j × 0 ⊂ M; Fk

[t±1
])

ι−ι◦ fw j −1+ε

−−−−−−−→ Hα⊗φ
i (N ′

⊂ M; Fk
[t±1

])y∼=

y∼=

Hα⊗φ
i (S j × 0; Fk

[t±1
]) −→ Hα⊗φ

i (N ′
; Fk

[t±1
])y∼=

y∼=

Hα
i (S j ; Fk) ⊗F F[t±1

]
ι−−ι+tw j

−−−−−→ Hα
i (N ′

; Fk) ⊗F F[t±1
]

commutes. Here the top vertical maps are given by the isomorphisms induced from the choice of paths,
and the bottom isomorphisms are the canonical isomorphisms mentioned above.

In order to prove the claim first recall that M̃ can be viewed as the homotopy classes of paths in M
starting at m0. Since φ vanishes on N ′ we can define φ : Ñ ′ → Z (recall that Ñ ′ ⊂ M̃) by sending
q ∈ Ñ ′ (represented by a path which we also call q) to φ of the closed path given by juxtaposing q with
a path in N ′ from the end point of q to m0. This is a well-defined surjective map and we can decompose
Ñ ′ = ∪r∈Z Ñ ′

r where Ñ ′
r = φ−1(r). Now note that the isomorphism from Lemma 2.1 (applied to the

constant path which connects the base point m0 of N ′ with the base point m0 of M) gives an isomorphism

Hi ((⊕r C∗(Ñ ′
r )) ⊗Z[π1(M,m0)] Fk

[t±1
]) = Hα⊗φ

i (N ′
⊂ M; Fk

[t±1
])

∼= Hα⊗φ
i (N ′

; Fk
[t±1

])

∼= Hα
i (N ′

; Fk) ⊗F F[t±1
]

where an element represented by σr ⊗ vt l with σr ∈ C∗(Ñ ′
r ) and v ∈ Fk gets sent to an element of the

form σ ⊗ tr+l where σ ∈ Hα
i (N ′

; Fk).

Similarly we can decompose S̃ j × 0 = ∪r∈Z ˜(S j × 0)r (using paths in N ′ again), and the same
arguments apply.

Now note that the inclusion S̃ j × 0 → Ñ ′ clearly sends ˜(S j × 0)r into Ñ ′
r . On the other hand the map

fw j −1+ε : S̃ j × 0 → Ñ ′ sends a point in S̃ j × 0 represented by a path γ to the the point represented
by the extension of the path γ through S j × [0, w j − 1 + ε]. Closing it up in N ′ we get a path whose

intersection number with S is increased by w j . This shows that fw j −1+ε sends ˜(S j × 0)r into Ñ ′
r+w j .

The claim now follows easily from the above observations. �

In the following we write bα
n (S) := dimF(Hα

n (S; Fk)) =
∑l

i=1 wi dimF(Hα
n (Si ; Fk)).

Proposition 3.3. We have

bα
1 (S) ≥ dimF(TorF[t±1](Hα⊗φ

1 (M; Fk
[t±1

]))).

In particular if ∆α
1 (t) 6= 0, then bα

1 (S) ≥ deg(∆α
1 (t)).

The proof is a variation on a standard argument.
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Proof. Consider the exact sequence from Proposition 3.2. Note that

F := Ker

{
l⊕

j=1

Hα
0 (S j ; Fk) ⊗F F[t±1

]

→ Hα
0 (N ′

; Fk) ⊗F F[t±1
]

}
⊂

l⊕
j=1

Hα
0 (S j ; Fk) ⊗F F[t±1

]

is a (possibly trivial) free F[t±1
]-module. Consider the exact sequence

l⊕
j=1

Hα
1 (S j ; Fk) ⊗F F[t±1

]

l⊕
j=1

ι−−ι+tw j

−−−−−−−−→ Hα
1 (N ′

; Fk) ⊗F F[t±1
] → Hα⊗φ

1 (M; Fk
[t±1

])
∂
−→ F → 0.

Since F[t±1
] is a PID the map ∂ splits, i.e., Hα⊗φ

1 (M; Fk
[t±1

]) ∼= Ker(∂) ⊕ F . In particular

dimF(TorF[t±1](Hα⊗φ

1 (M; Fk
[t±1

]))) = dimF(TorF[t±1](Ker(∂))).

Using appropriate bases the map
⊕l

j=1 ι− − ι+tw j , which represents the module Ker(∂), is presented by
a matrix of the form(

A1tw1 + B1 . . . Al t
wl + Bl

)
where A j , B j , j = 1, . . . , l are matrices over F of size dimF(Hα

1 (N ′
; Fk)) × dimF

(
Hα

1 (S j ; Fk)
)
. The

proposition now follows easily from combining Lemma 2.2 with the following claim.

Claim. Let H be a F[t±1
]-module with a presentation matrix of the form

C =
(

A1tw1 + B1 . . . Al t
wl + Bl

)
where A j , B j are matrices over F of size p × q j . Then dimF(TorF[t±1](H)) ≤

∑l
j=1 q jw j .

For the proof of the claim let q =
∑l

j=1 q j . Using row and column operations over the PID F[t±1
]

we can transform C into a matrix of the form
f1(t) 0 . . . 0 0

0 f2(t) . . . 0 0

0 0
. . . 0 0

0 0 . . . fr (t) 0
0 0 . . . 0 (0)p−r×q−r


for some fi (t) ∈ F[t±1

] \ {0}. Clearly dimF(TorF[t±1](H)) =
∑r

i=1 deg( fi (t)). Since row and column
operations do not change the ideals of F[t±1

] generated by minors (cf. [4, p. 101]), and since any k × k
minor of At + B has degree at most

∑l
j=1 q jw j , it follows that

∑l
i=1 deg( fi (t)) ≤

∑l
j=1 q jw j . This

concludes the proof of the claim. �

Proposition 3.4. If ∆α
1 (t) 6= 0 then either S is connected or bα

0 (S j ) = 0 for j = 1, . . . , l.

The following proof is partly inspired by ideas of Turaev [28].
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Proof. Consider the exact sequence from Proposition 3.2:

→ Hα⊗φ

1 (M; Fk
[t±1

])

→

l⊕
j=1

Hα
0 (S j ; Fk) ⊗F F[t±1

]

l⊕
j=1

ι−−ι+tw j

−−−−−−−−→ Hα
0 (N ′

; Fk) ⊗F F[t±1
] → Hα⊗φ

0 (M; Fk
[t±1

]) → 0.

From ∆α
1 (t) 6= 0 it follows that Hα⊗φ

1 (M; Fk
[t±1

]) is F[t±1
]-torsion. By Lemma 2.4

Hα⊗φ

0 (M; Fk
[t±1

]) is F[t±1
]-torsion. The exact sequence shows that the ranks of the free F[t±1

]-
modules ⊕

l
j=1 Hα

0 (S j ; Fk) ⊗F F[t±1
] and Hα

0 (N ′
; Fk) ⊗F F[t±1

] are equal, and hence

l⊕
j=1

Hα
0 (S j ; Fk) ∼= Hα

0 (N ′
; Fk). (3)

Note that the representations π1(S j , s j ) → π1(M, m0)
α
→ GL(F, k) induced by our chosen paths

factor through π1(N ′, m0). Therefore

bα
0 (S j ) ≥ bα

0 (N ′), j = 1, . . . , l (4)

by Lemma 2.6.
First consider the case bα

0 (N ′) = 0. In that case it follows from isomorphism (3) that bα
0 (S j ) = 0 for

all j = 1, . . . , l.
Now assume that bα

0 (N ′) > 0. It follows immediately from the isomorphism in (3) and from the
inequality (4) that l = 1. But since φ is primitive it also follows that w1 = 1, i.e., S is connected. �

Proposition 3.5. Assume that ∆α
1 (t) 6= 0, then

bα
0 (S) = deg(∆α

0 (t)).

Proof. First assume that bα
0 (S j ) = 0 for every component j = 1, . . . , l. Then Hα

0 (N ′
; Fk) = 0 by the

isomorphism (3). This implies that Hα⊗φ

0 (M; Fk
[t±1

]) = 0 from the exact sequence in Proposition 3.2,
hence ∆α

0 (t) = 1.
Now assume that bα

0 (S j ) 6= 0 for some j . By Proposition 3.4 S is connected and hence N ′
= N .

It follows from Lemma 2.6 that the maps ι+, ι− : Hα
0 (S; Fk) → Hα

0 (N ′
; Fk) are surjective. Since

Hα
0 (S; Fk) ∼= Hα

0 (N ′
; Fk) by isomorphism (3) it follows that ι+ and ι− induce isomorphisms on

Hα
0 (S; Fk).
Let b := bα

0 (S) = bα
0 (N ′). Picking appropriate bases for Hα

0 (S; Fk) and Hα
0 (N ′

; Fk) the sequence
from Proposition 3.2 becomes

Fb
⊗F F[t±1

]
t ·I d−J
−−−−→ Fb

⊗F F[t±1
] → Hα⊗φ

0 (M; Fk
[t±1

]) → 0,

where J : Fb
→ Fb is an isomorphism. It follows that Hα⊗φ

0 (M; Fk
[t±1

]) ∼= Fb ∼= Hα
0 (S; Fk). The

lemma now follows from Lemma 2.2. �

Proposition 3.6. Assume that ∂ M is empty or consists of tori. If ∆α
1 (t) 6= 0, then

bα
2 (S) = deg(∆α

2 (t)).
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Proof. Let I := {i ∈ {1, . . . , l} | Si closed} and let T = ∪i∈I Si . Clearly bα
2 (S) =

∑
i∈I wi bα

2 (Si ).
Note that we can write ∂ N ′

= T+ ∪ T− ∪ W for some surface W where T− = T × 0 and
T+ = ∪i∈I Si × (wi − 1 + ε). It follows from Lemma 2.4 and Proposition 2.5 that the long exact
sequence from Proposition 3.2 becomes

0 →

⊕
i∈I

Hα
2 (Si ; Fk) ⊗F F[t±1

]

⊕
i∈I

ι−−ι+twi

−−−−−−−→ Hα
2 (N ′

; Fk) ⊗F F[t±1
] → Hα⊗φ

2 (M; Fk
[t±1

]) → 0.

We need the following claim.

Claim. The maps ι−, ι+ : Hα
2 (T ; Fk) = ⊕i∈I Hα

2 (Si ; Fk) → Hα
2 (N ′

; Fk) are isomorphisms.

In order to give a proof of the claim we first tensor the above short exact sequence with F(t). We see
that Hα

2 (T ; Fk) and Hα
2 (N ′

; Fk) have the same dimension as F-vector spaces. It is therefore enough to
show that ι− and ι+ are injections. This is clearly the case if T = ∅. So let us now assume that T 6= ∅.

Consider the short exact sequence

Hα
3 (N ′, T+; Fk) → Hα

2 (T+; Fk) → Hα
2 (N ′

; Fk).

Note that ∂ N ′ is the disjoint union of T+ and T−∪W since T+ is closed. We can therefore apply Poincaré
duality. By Poincaré duality and by Lemma 2.3 in Section 2.3 we then have

Hα
3 (N ′, T+; Fk) ∼= H0

α (N ′, T− ∪ W ; Fk) ∼= HomF(Hα
0 (N ′, T− ∪ W ; Fk), F).

Here α is the adjoint representation of α which is defined in Section 2.3. Since T 6= ∅ it follows from
Lemma 2.6 that the map Hα

0 (T− ∪ W ; Fk) → Hα
0 (N ′

; Fk) is surjective. It now follows from the long
exact homology sequence that Hα

0 (N ′, T− ∪ W ; Fk) = 0. This shows that ι+ is injective. The proof for
ι− is identical. This concludes the proof of the claim.

We now show that Hα⊗φ

2 (M; Fk
[t±1

]) has a presentation matrix of the form AT + B where A, B are
invertible matrices over F and D is a diagonal matrix with bα

2 (Si ) entries twi for any i ∈ I . Note that

det(AD + B) = det(B) + · · · + det(A)t

∑
i∈I

wi bα
2 (Si )

.

It follows that

dim(Hα⊗φ

2 (M; Fk
[t±1

])) = deg(det(AD + B)) =

∑
i∈I

wi b
α
2 (Si ) = bα

2 (S). �

Now we can conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality we can assume that φ is primitive since the Thurston
norm and the degrees of twisted Alexander polynomials are homogeneous. Let Ŝ be the weighted surface
from Proposition 3.1. By Lemma 2.7 we have

‖φ‖T = max{0, b1(S) − (b0(S) + b2(S))}

≥ b1(S) − (b0(S) + b2(S))

=
1
k
(bα

1 (S) − (bα
0 (S) + bα

2 (S))).

The theorem now follows immediately from Proposition 3.3, Lemma 2.4, Propositions 3.5 and 3.6 and
Lemma 2.8.
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3.2. Proof of Theorem 1.2

Proof of Theorem 1.2. Let S be a fiber of the fiber bundle M → S1. Clearly S is dual to φ ∈ H1(M)

and it is well-known that S is Thurston norm minimizing. Denote by M̂ the infinite cyclic cover of M
corresponding to φ. Then an easy argument shows that Hα⊗φ

i (M; Fk
[t±1

]) ∼= Hα
i (M̂; Fk) (cf. also [16,

Theorem 2.1]). In particular Hα⊗φ
i (M; Fk

[t±1
]) ∼= Hα

i (S; Fk).

By assumption S 6= D2 and S 6= S2. Therefore by Lemmas 2.7 and 2.2 we get

‖φ‖T = χ−(S)

= b1(S) − b0(S) − b2(S)

=
1
k
(bα

1 (S) − bα
0 (S) − bα

2 (S))

=
1
k
(dimF(Hα⊗φ

1 (M; Fk
[t±1

])) − dimF(Hα⊗φ

0 (M; Fk
[t±1

]))

− dimF(Hα⊗φ

2 (M; Fk
[t±1

])))

=
1
k
(deg(∆α

1 (t)) − deg(∆α
0 (t)) − deg(∆α

2 (t)))

= deg(τ (M, φ, α)). �

Since ‖φ‖T might be unknown for a given example the following corollary to Theorem 1.2 gives
sometimes a more practical fibering obstruction.

Corollary 3.7. Let M be a 3-manifold and φ ∈ H1(M) primitive such that (M, φ) fibers over S1 and
such that M 6= S1

× D2, M 6= S1
× S2. Let F and F′ be fields. Consider the untwisted Alexander

polynomial ∆1(t) ∈ F[t±1
]. For any representation α : π1(M) → GL(F′, k) we have

deg(∆1(t)) − (1 + b3(M)) =
1
k
(deg(∆α

1 (t)) − deg(∆α
0 (t)) − deg(∆α

2 (t))).

Proof. The corollary follows immediately from applying Theorem 1.2 to the trivial representation
π1(M) → GL(F, 1) and to the representation α. � �

4. The case of vanishing Alexander polynomials

Let L be a boundary link (for example a split link). It is well-known that the untwisted one-variable
and multi-variable Alexander polynomials of L vanish (cf. [14]). Similarly one can see that in fact most
of the twisted one-variable and multi-variable Alexander polynomials vanish as well. (See [7] for the
definition of twisted multi-variable Alexander polynomials.) Therefore Theorem 1.1 can in most cases
not be applied to get lower bounds on the Thurston norm.

It follows clearly from Propositions 3.3 and 3.6 that the condition ∆α
1 (t) 6= 0 is only needed to ensure

that there exists a surface S dual to φ with bα
0 (S) = deg(∆α

0 (t)) and bα
2 (S) = deg(∆α

2 (t)). The following
theorem can often be applied in the case of link complements.
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Theorem 4.1. Let M be a 3-manifold such that H1(M)
i∗
→ H1(∂ M) is an injection where i∗ is the

inclusion-induced homomorphism. Let N be a torus component of ∂ M, φ ∈ H1(N ) ∩ Im(i∗) primitive,
and α : π1(M) → GL(F, k) a representation. Then

‖(i∗)−1(φ)‖T ≥
1
k

deg(∆̃α
1 (t)) − 1.

It is not hard to show that we can find a Thurston norm minimizing surface dual to (i∗)−1(φ) which
is connected and has boundary (cf. e.g. [11, Corollary 10.4] or Turaev [28, p. 14]). The theorem now
follows from the proof of Theorem 1.1.

The main application is to study the Thurston norm of the complement of a link L = L1 ∪· · ·∪ Lm ⊂

S3. In this case we can take φ to be dual to the meridian of the i th component L i . Then it follows from the
proof of Theorem 4.1 and a standard argument that ‖(i∗)−1(φ)‖T = 2 genus(L i ) − 1, where genus(L i )

denotes the minimal genus of a surface in X (L) bounding a parallel copy of L i . Similar results were
obtained by Turaev [28, p. 14] and Harvey [11, Corollary 10.4].

The following observation will show that in more complicated cases there is no immediate way to
determine b0(S): if L = L1 ∪ L2 is a split oriented link, and φ : H1(X (L)) → Z given by sending the
meridians to 1, then a Thurston norm minimizing surface S dual to φ is easily seen to be the disjoint
union of the Seifert surfaces of L1 and L2. On the other hand if L1 and L2 are parallel copies of a knot
with opposite orientations and φ : H1(X (L)) → Z is again given by sending the meridians to 1, then
the annulus S between L1 and L2 is dual to φ with Euler characteristic zero. Summarizing, we have two
situations in which the first twisted Alexander polynomials vanish (in fact H1(X (L); Q[t±1

]) has rank
one), φ is of the same type, but b0(S) differs.

5. Examples

5.1. Representations of 3-manifold groups

In our applications we first find homomorphisms π1(M) → Sk , and then find a representation of Sk .
Here Sk denotes the permutation group of order k. The first choice of a representation for Sk that comes
to mind is Sk → GL(F, k) where Sk acts by permuting the coordinates. But Sk leaves the subspace
{(v, v, . . . , v) | v ∈ F} ⊂ Fk invariant, hence this representation is ‘not completely non-trivial’. To
avoid this we prefer to work with a slightly different representation of Sk . If ϕ : π1(M) → Sk is a
homomorphism then we consider

α(ϕ) : π1(M)
ϕ
→ Sk → GL(Vk−1(F)),

where

Vl(F) :=

{
(v1, . . . , vl+1) ∈ Fl+1

∣∣∣∣∣ l+1∑
i=1

vi = 0

}
.

Clearly dimF(Vl(F)) = l and Sl+1 acts on it by permutation.
We point out that the fundamental groups of 3-manifolds for which the geometrization conjecture

holds are residually finite (cf. [24,13]). In particular most (or perhaps all) 3-manifolds have many
homomorphisms to finite groups, hence to Sk’s.
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Fig. 1. The Conway knot 11401 and a Seifert surface of genus 3 (from [8]).

5.2. Knots with up to 12 crossings: Genus bounds and fiberedness

In this section we show that the degrees of twisted Alexander polynomials detect the genus of all
knots with 12 crossings or less. Also we detect all non-fibered knots with 12 crossings or less, some of
which are new discoveries to our knowledge.

I. Knot genus. There are 36 knots with 12 crossings or less for which genus(K ) > 1
2 deg ∆K (t) (cf.

e.g. [2] or [23]). The most famous and interesting examples are K = 11401 (the Conway knot) and 11409
(the Kinoshita–Terasaka knot). Here we use the knotscape notation.

First, we consider the Conway knot K = 11401 whose diagram is given in Fig. 1. The genus of
the Conway knot is 3. This knot has Alexander polynomial one, i.e., the degree of ∆K (t) equals zero.
Furthermore this implies that π1(X (K ))(1) is perfect, i.e., π1(X (K ))(n)

= π1(X (K ))(1) for any n > 1.
(For a group G, G(n) is defined inductively as follows: G(0)

:= G and G(n+1)
:= [G(n), G(n)

].) Therefore
the genus bounds of Cochran [3] and Harvey [11] vanish as well. The fundamental group π1(X (K )) is
generated by the meridians a, b, . . . , k of the segments in the knot diagram of Fig. 1. The relations are

a = jbj−1, b = f c f −1, c = g−1dg, d = k−1ek,

e = h−1 f h, f = igi−1, g = e−1he, h = c−1ic,

i = aja−1, j = iki−1, k = e−1ae.

Using the program KnotTwister [5] we found the homomorphism ϕ : π1(X (K )) → S5 given by

a 7→ (142), b 7→ (451), c 7→ (451), d 7→ (453),

e 7→ (453), f 7→ (351), g 7→ (351), h 7→ (431),

i 7→ (351), j 7→ (352), k 7→ (321),

where we use cycle notation. We then consider α := α(ϕ) : π1(X (K ))
ϕ
→ S5 → GL(V4(F13)). Using

KnotTwister we compute deg(∆α
0 (t)) = 0 and we compute the first twisted Alexander polynomial to be

∆α
1 (t)=1 + 6t + 9t2

+ 12t3
+ t5

+ 3t6
+ t7

+ 3t8
+ t9

+ 12t11
+ 9t12

+ 6t13
+ t14

∈ F13[t
±1

].

Theorem 1.1 together with Proposition 2.5 says that if ∆α
1 (t) 6= 0, then

genus(K ) ≥
1

2k

(
deg(∆α

1 (t)) − deg(∆α
0 (t))

)
+

1
2
.

Therefore in our case we get

genus(K ) ≥
1
8

· 14 +
1
2

=
18
8

= 2.25.
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Table 1
Computation of degrees of twisted Alexander polynomials

Knotscape name 11401 11409 11412 11434 11440 11464
Genus bound from ∆K (t) 0 0 2 1 2 1
Genus bound from ∆α

1 (t) 2.25 2.00 3.00 2.00 3.00 2.00

Knotscape name 11519 121311 121316 121319 121339 121344
Genus bound from ∆K (t) 2 1 2 1 1 2

Genus bound from ∆
α(ϕ)
1 (t) 3.00 2.00 2.50 3.00 2.00 3.00

Knotscape name 121351 121375 121412 121417 121420 121509
Genus bound from ∆K (t) 2 2 1 1 2 2

Genus bound from ∆
α(ϕ)
1 (t) 3.00 3.00 2.00 3.00 3.00 3.00

Knotscape name 121519 121544 121545 121552 121555 121556
Genus bound from ∆K (t) 2 2 2 2 2 1

Genus bound from ∆
α(ϕ)
1 (t) 3.00 3.00 3.00 3.00 3.00 2.00

Knotscape name 121581 121601 121609 121699 121718 121745
Genus bound from ∆K (t) 1 0 1 1 0 1

Genus bound from ∆
α(ϕ)
1 (t) 2.00 1.25 2.00 2.00 2.00 2.00

Knotscape name 121807 121953 122038 122096 122100 122118
Genus bound from ∆K (t) 1 2 2 2 2 2

Genus bound from ∆
α(ϕ)
1 (t) 2.00 3.00 3.00 3.00 3.00 3.00

Since genus(K ) is an integer we get genus(K ) ≥ 3. Since there exists a Seifert surface of genus 3 for K
(cf. Fig. 1) it follows that the genus of the Conway knot is indeed 3.

Second, let K be the Kinoshita–Terasaka knot K = 11409. The genus of K is 2. We found a map
ϕ : π1(X (K )) → S5 such that ∆α(ϕ)

1 (t) ∈ F13[t±1
] has degree 12 and deg(∆α(ϕ)

0 (t)) = 0. It follows
from Theorem 1.1 that genus(K ) ≥

1
8 · 12 +

1
2 = 2. Note that in this case our inequality becomes

equality, hence ‘rounding up’ is not necessary. Our Table 1 shows that this is surprisingly often the case.
This fact is of importance in [7] where we study the Thurston norm of link complements.

Table 1 gives all knots with 12 crossings or less for which deg(∆K (t)) < 2 genus(K ). We
obtained the list of these knots from Alexander Stoimenow’s knot page [23]. We compute twisted
Alexander polynomials using KnotTwister and 4-dimensional representations of the form α(ϕ) :

π1(X (K ))
ϕ
→ S5 → GL(V4(F13)). Our genus bounds from Theorem 1.1 give (by rounding up if

necessary) the correct genus in each case.
Using KnotTwister it takes only a few seconds to find such representations and to compute the twisted

Alexander polynomial.

Remark. Let K1 and K2 be knots and assume there exists an epimorphism ϕ : π1(X (K1)) →

π1(X (K2)). Simon asked (cf. question 1.12(b) on Kirby’s problem list [15]) whether this implies that
genus(K1) ≥ genus(K2). Let α : π1(X (K2)) → GL(F, k) be a representation. By [17] ∆α

K2,1
(t)

divides ∆α◦ϕ
K1,1

(t). Together with Lemma 2.6 this shows that the genus bounds from Theorem 1.1 for
K1 are greater than or equal to the bounds for K2. Thus Theorem 1.1 (together with the observation that
Theorem 1.1 often detects the correct genus) suggests an affirmative answer to Simon’s question. This
should also be compared to the results in [12].
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Table 2
Alexander polynomials of non-fibered knots

Knotscape name 121345 121498 121502 121546 121567 121670 121682
Order of permutation group k 4 5 5 3 5 5 4
Order p of finite field 3 2 11 2 3 2 3

Knotscape name 121752 121771 121823 121938 122089 122103
Order of permutation group k 3 3 5 5 5 4
Order p of finite field 2 7 7 11 2 3

Remark. There are situations when for a given manifold the degree of the twisted Alexander polynomial
for some representation gives a worse bound for the Thurston norm than the degree of the untwisted
Alexander polynomial. This should be compared to the situation of [3,12,6]: Cochran’s and Harvey’s
sequence of higher order Alexander polynomials gives a never decreasing sequence of lower bounds on
the Thurston norm.

II. Fiberedness. Consider the knot K = 121345. Its Alexander polynomial equals ∆K (t) = 1 − 2t +

3t2
− 2t3

+ t4 and its genus equals two, therefore K satisfies Neuwirth’s condition (1) in Section 1.4.
It follows from Corollary 3.7 that if K were fibered, then for any field F and any representation
α : π1(M) → GL(F, k) the following would hold:

deg(∆K (t)) =
1
k
(deg(∆α

1 (t)) − deg(∆α
0 (t))) + 1.

We found a representation α : π1(X (K )) → S4 such that for the canonical representation α :

π1(X (K )) → S4 → GL(F3, 4) given by permuting the coordinates, we get deg(∆α
1 (t)) = 7 and

deg(∆α
0 (t)) = 1. We compute

1
4

deg(∆α
1 (t)) −

1
4

deg(∆α
0 (t)) + 1 =

10
4

6= 4 = deg(∆K (t)).

Hence K is not fibered.
Similarly we found altogether thirteen 12-crossings knots which satisfy condition (1) but which are

not fibered; we list them in Table 2. As we mentioned in the introduction, Stoimenow and Hirasawa
showed that the remaining 12-crossing knots are fibered if and only if they satisfy Neuwirth’s condition
(1). Altogether this completes the classification of all fibered 12-crossing knots.

5.3. Closed manifolds

Let K ⊂ S3 be a non-trivial knot, denote the result of zero-framed surgery along K by MK . Let
φ ∈ H1(MK ) be a generator. Gabai [9, Theorem 8.8] showed that for a non-trivial knot K we have
‖φ‖T,MK = 2 genus(K ) − 2. Furthermore Gabai [9] showed that a knot K is fibered if and only if MK
is fibered.

Using KnotTwister one can easily see that, for any knot K with 12 crossings or less, twisted Alexander
polynomials corresponding to appropriate representations determine the Thurston norm of MK and
detect whether MK is fibered or not.
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6. Generalization of Cha’s fibering obstruction

In this section we formulate and prove Proposition 6.1 which, in combination with Theorem 1.2,
immediately implies Theorem 1.3. (In Theorem 1.3 it is easy to prove that if ∂ M is non-empty then ∂ M
has to be a collection of tori.)

In order to formulate Proposition 6.1 we need some more notation. For a ring R and a maximal ideal
m ⊂ R we denote the field R/m by Fm. Furthermore given a representation α : π1(M) → GL(R, k) we
denote by αm the representation π1(M)

α
→ GL(R, k) → GL(Fm, k) where GL(R, k) → GL(Fm, k) is

induced from the canonical map πm : R → R/m = Fm. The main example to keep in mind is R = Z,
m = (p) for a prime p, and R/m = Z/(p) = Fp.

Proposition 6.1. Let M be a 3-manifold whose boundary is empty or consists of tori and let R be a
Noetherian UFD. Let φ ∈ H1(M) be non-trivial and α : π1(M) → GL(R, k) a representation. Then
∆α

1 (t) ∈ R[t±1
] is monic and

‖φ‖T =
1
k

deg(τ (M, φ, α))

if and only if for all maximal ideals m of R we have that ∆αm
1 (t) is non-trivial and

‖φ‖T =
1
k

deg(τ (M, φ, αm)).

Proof. We only prove this proposition in the case that M is closed. The proof for the case that ∂ M is a
non-empty collection of tori is very similar. Note that in either case χ(M) = 0.

We first make use of an argument in the proof of [20, Theorem 5.1]. Choose a triangulation τ of M .
Let T be a maximal tree in the 1-skeleton of τ and let T ′ be a maximal tree in the dual 1-skeleton. We
collapse T to form a single 0-cell and join the 3-simplices along T ′ to form a single 3-cell. Denote the
number of 1-cells by n. It follows from M closed that χ(M) = 0, hence there are n 2-cells. From the
CW structure we obtain a chain complex C∗ = C∗(M̃) of the following form

0 → C3(M̃)
∂3
−→ C2(M̃)

∂2
−→ C1(M̃)

∂1
−→ C0(M̃) → 0

where Ci (M̃) ∼= Z[π1(M)] for i = 0, 3 and Ci (M̃) ∼= Z[π1(M)]n for i = 1, 2. Let Ai , i = 0, . . . , 3
over Z[π1(M)] be the matrices corresponding to the boundary maps ∂i : Ci → Ci−1 with respect to the
bases given by the lifts of the cells of M to M̃ . We can arrange the lifts such that

A3 = (1 − g1, 1 − g2, . . . , 1 − gn)
t ,

A1 = (1 − h1, 1 − h2, . . . , 1 − hn).

Note that {g1, . . . , gn} and {h1, . . . , hn} are generating sets for π1(M) since M is a closed 3-manifold.
Since φ is non-trivial there exist r, s such that φ(gr ) 6= 0 and φ(hs) 6= 0. Let B3 be the r th row of A3.
Let B2 be the result of deleting the r th column and the sth row from A2. Let B1 be the sth column of A1.

Given a p×q matrix B = (brs) be with entries in Z[π ] we write brs =
∑

bg
rs g for bg

rs ∈ Z, g ∈ π . We
then define (α ⊗ φ)(B) to be the p × q matrix with entries

∑
bg

rsα(g)tφ(g). Since each
∑

bg
rsα(g)tφ(g)

is a k × k matrix with entries in F[t±1
] we can think of (α ⊗ φ)(B) as a pk × qk matrix with entries in

F[t±1
].
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Now note that

det((α ⊗ φ)(B3)) = det(id − (α ⊗ φ)(gr )) = det(id − φ(gr )α(gr )) 6= 0

since φ(gr ) 6= 0. Similarly det((α ⊗ φ)(B1)) 6= 0 and det((αm ⊗ φ)(Bi )) 6= 0, i = 1, 3 for any maximal
ideal m. We need the following theorem which can be found in [26].

Theorem 6.2 ([26, Theorem 2.2, Lemma 2.5, Theorem 4.7]). Let S be a Noetherian UFD. Let β :

π1(M) → GL(S, k) be a representation and ϕ ∈ H1(M).

(1) If det((β ⊗ ϕ)(Bi )) 6= 0 for i = 1, 2, 3, then Hβ
i (M; Sk

[t±1
]) is S[t±1

]-torsion for all i .

(2) If Hβ
i (M; Sk

[t±1
]) is S[t±1

]-torsion for all i , and if det((β ⊗ ϕ)(Bi )) 6= 0 for i = 1, 3, then
det((β ⊗ ϕ)(B2)) 6= 0 and

3∏
i=1

det((β ⊗ ϕ)(Bi ))
(−1)i

=

3∏
i=0

(∆β
i (t))(−1)i+1

= τ(M, ϕ, β).

First assume that ∆αm
1 (t) 6= 0 and

‖φ‖T =
1
k
(deg(∆αm

1 (t)) − deg(∆αm
0 (t)) − deg(∆αm

2 (t)))

for all maximal ideals m. By Lemma 2.4 and Proposition 2.5 we get ∆αm
i (t) 6= 0 for all i , in particular

Hαm
i (M; Fk

m[t±1
]) is Fm[t±1

]-torsion for all i and all maximal ideals m. It follows from Theorem 6.2
that det((αm ⊗ φ)(B2)) 6= 0. Clearly this also implies that det((α ⊗ φ)(B2)) 6= 0. Since we already
know that det((α ⊗ φ)(Bi )) 6= 0 for i = 1, 3 it follows from Theorem 6.2 that Hα

i (M; Rk
[t±1

]) is
R[t±1

]-torsion for all i .
It follows from [26, Lemma 4.11] that ∆α

0 (t) divides det((α⊗φ)(B1)) = det(id−φ(hs)α(hs)) which
is a monic polynomial in R[t±1

] since φ(hs) 6= 0 and since det(α(hs)) is a unit. But then ∆α
0 (t) is monic

as well. The same argument (again using [26, Lemma 4.11]) shows that ∆α
2 (t) is monic. It follows from

the argument of Lemma 2.4 that Hα
3 (M; Rk

[t±1
]) = 0, hence ∆α

3 (t) = 1.
Denote the map R → R/m = Fm by πm. We also denote the induced map R[t±1

] → Fm[t±1
] by πm.

It follows from Theorem 6.2 that
3∏

i=0

πm(∆α
i (t)(−1)i+1

) =

3∏
i=1

πm(det((α ⊗ φ)(Bi )))
(−1)i

=

3∏
i=1

det((αm ⊗ φ)(Bi ))
(−1)i

=

3∏
i=0

∆αm
i (t)(−1)i+1

for all maximal ideals m. By assumption we get

1
k

3∑
i=0

(−1)i+1 deg
(
πm

(
∆α

i (t)
))

=
1
k

3∑
i=0

(−1)i+1 deg
(
∆αm

i (t)
)

= ‖φ‖T
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for all m. Since ∆α
i (t) is monic for i = 0, 2, 3 it follows that

deg
(
πm

(
∆α

1 (t)
))

= deg
(
πn

(
∆α

1 (t)
))

for all maximal ideals m and n. Since R is a UFD it follows that ∆α
1 (t) is monic. Hence

deg
(
πm

(
∆α

i (t)
))

= deg
(
∆α

i (t)
)

for all i and all maximal ideals m and clearly

‖φ‖T =
1
k

(
deg(∆α

1 (t)) − deg(∆α
0 (t)) − deg(∆α

2 (t))
)
.

Now assume that ∆α
1 (t) ∈ R[t±1

] is monic and

‖φ‖T =
1
k

(
deg(∆α

1 (t)) − deg(∆α
0 (t)) − deg(∆α

2 (t))
)
.

The same argument as above shows that ∆α
i (t), i = 0, 2, 3, are monic as well. Recall that det(α⊗φ)(Bi ),

i = 1, 3, are monic polynomials. It follows from Theorem 6.2 that

det(α ⊗ φ)(B2) = det(α ⊗ φ)(B1) det(α ⊗ φ)(B3)

3∏
i=0

(
∆α

i (t)
)(−1)i+1

is a quotient of monic non-zero polynomials. In particular det(αm ⊗φ)(B2) = πm(det(α ⊗φ)(B2)) 6= 0.
It now follows immediately from Theorem 6.2 that Hαm

i (M; Fk
m[t±1

]) is Fm[t±1
]-torsion for all i . In

particular ∆αm
1 (t) 6= 0. Using arguments as above we now see that

deg(τ (M, φ, αp)) =
1
k

(
deg

(
∆αm

1 (t)
)
− deg

(
∆αm

0 (t)
)
− deg

(
∆αm

2 (t)
))

=
1
k

3∑
i=0

(−1)i+1 deg
(
∆αm

i (t)
)

=
1
k

3∑
i=0

(−1)i+1 deg
(
πm

(
∆α

i (t)
))

=
1
k

3∑
i=0

(−1)i+1 deg
(
∆α

i (t)
)

= ‖φ‖T . �

Remark. Let α : π1(M) → GL(Z, k) be a representation. Then it is in general not true that for
a prime p we have ∆αp

1 (t) = πp(∆α
1 (t)) ∈ Fp[t±1

] (we use the notation of Proposition 6.1), not
even if (M, φ) fibers over S1. Indeed, let K be the trefoil knot and ϕ : π1(X (K )) → S3 the unique
epimorphism. Consider the representation α(ϕ) : π1(X (K )) → GL(Z, 2) as in Section 5.1. Then
deg

(
π3(∆α

1 (t))
)

= 2, but deg
(
∆α3

1 (t)
)

= 3.
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